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The Generalized Autoregressive Score (GAS), Exponential GAS (EGAS) 

and Asymmetric Exponential GAS (AEGAS) are new classes of volatility 

models that simultaneously account for jumps and asymmetry. Using 

these models, we estimate the dynamic pattern of the Nigeria All Share 

Index (ASI) from January 3, 2006 to July 22, 2014. Parameter estimates 

of the models were obtained using the Quasi Maximum Likelihood 

(QML) approach, and in-sample conditional volatility forecasts from 

each of the models were evaluated using the minimum loss function 

approach. Among the classical volatility models, the initial results 

detected IGARCH-t as the best model for predicting volatility in the ASI. 

However, in estimating the GAS variants, the Beta-t-EGARCH model 

proves to predict the volatility in the stock returns better than the 

IGARCH-t. The estimates could not improve further when the skewed 

version of the Student-t distribution was considered. We therefore 

recommend the GAS, EGAS and AEGAS family models in predicting 

jumps, outliers and asymmetry in financial time series modelling. 
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1. Introduction  

The importance of financial assets as it affects global economy coupled 

with global financial crisis of 2008 has gingered researchers, regulators 

and financiers towards studying the dynamic patterns of assets time 

series. A lot of progress has therefore been made in their understanding 

of dynamics and distributions of risks (volatility). Volatility, a measure 

of risks is compounded by the identification of properties/stylized facts 

in stocks returns, and by development and applications of methodologies 

for investigating and estimating these time series. 

The classical Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) model of Bollerslev (1986) and its asymmetric variants are 

not robust enough to capturing occasional changes in financial series 
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known as jumps, thereby tends to underestimate the magnitude of the 

returns.
45

 The GARCH model assumes that probability distributions are 

also limited in this regards, therefore mixture of probability distributions 

are necessary to predict well, the dynamics of conditional volatility  

realized from such returns series. The Beta probability distribution, 

mixed with the Student-t distribution and the resulting mixed-

distribution applied to the GARCH model, with little modification to 

obtain the volatility model that is robust in modelling jumps. The oil and 

stocks market stress of 1987 and 2008-2009, respectively are very good 

examples of jumps in volatility series (see Bates, 2000; Pan, 2002). 

These are occasional large movements with transient impact. For 

example, Eraker, Johannes and Polson (2003) apply continuous time 

stochastic volatility models with jumps components in returns and 

volatility of S&P500 and Nasdaq stocks indices and observe significant 

evidence of jumps components, both in the volatility and in the returns. 

Generalized Autoregressive Score (GAS), the Exponential GAS (EGAS) 

and the Asymmetric Exponential GAS (AEGAS) are new classes of 

volatility models that simultaneously account for jumps and asymmetry. 

These models are the variants of Beta-t-GARCH family recently 

proposed in the literature by Creal, Koopman and Lucas (2013) and 

Harvey (2013). To the best of our knowledge, these Beta-t-GARCH 

models have not been applied to model volatility in the Nigeria Stock 

Market, but existing literature focus on classical symmetric and 

asymmetric GARCH models (see Ogum and Nouyrigat 2005, 

Osazevbaru 2014 and Atoi 2014). 

Therefore, this study, seeks to estimate volatility in the Nigerian Stock 

Market using the recently proposed jumps robust volatility models, 

which account for jumps and asymmetry inherent in financial returns 

with the view to comparing the estimated models with the choice of 

IGARCH-t model for ASI series in Yaya (2013) and recommending the 

most appropriate model for financial Analysts and portfolio managers in 

the financial market. These jumps in ASI were experience as a result of 

influence of news, politics and global crisis on the Nigerian economy. 

                                                 
4
 Salisu (2016) related jumps with structural breaks in oil price series where the author 

modelled oil price volatility using Beta-Skew-t-EGARCH framework. 
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The structure of the paper is as follows: Section 1 introduces the paper. 

Section 2 presents the literature on jumps and Beta-t-GARCH models. 

Section 3 presents the variants of Beta-t-GARCH models and the 

estimation method. Section 4 presents the data and empirical results, 

while section 5 renders the summary, conclusion and policy 

recommendations.     

 

2. Review of Literature 

All share index data are good examples of financial time series data, 

where behaviour of stock could be investigated and future market 

volatility predicted. The financial models are mostly volatility models, 

and the GARCH model of Bollerslev (1986); Exponential GARCH 

(EGARCH) model of Nelson (1991); Glosten, Jaganathan and Runkle 

(GJR) model of Glosten, Jaganathan and Runkle (1993), Asymmetric 

Power ARCH (APARCH) model of Ding, Granger and Engle (1993) are 

all stationary models. The nonstationary volatility model is the 

Integrated GARCH (IGARCH) model proposed in Engle and Bollerslev 

(1986). All these models were proposed based on the innovations 

assumptions of volatility model. These assumptions are those of 

normality, Student–t and generalized error distributions, as well as the 

skewed versions. In practical applications, the dynamics/distributions of 

the volatility series may not follow any of the six probability distribution 

combinations above. Xekalaki and Degiannakis (2010) believe that the 

unconditional distribution of the innovations are always thicker than the 

normal distribution, therefore this calls for mixture of probability 

distributions that can capture well the tail effect of the volatility series.
6
 

Financial time series data exhibit leptokurticity, that is, the distribution 

of their returns is fat-tailed (see Mandelbrot, 1963; Fama, 1965).  

A promising GARCH distribution that models both the skewness and the 

kurtosis is the skewed-Student t- distribution proposed in Fernandez and 

Steel (1998). This probability distribution was introduced in GARCH 

modelling in Lambert and Laurent (2000, 2001). As noted in Laurent 

(2013), the returns from asset prices occasionally exhibits large changes 

that cannot be attributed to outliers, but jumps in the real sense. These 

jumps were modelled using Poisson or Bernoulli jump distribution, 

which when combined with other probability distribution, leads to 

Poisson or Bernoulli mixtures of GARCH probability distributions for 
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financial returns. Some studies have assumed fat tails probability 

distributions, such as the skewed or unskewed Student-t distribution or 

the generalized error distribution to account for the occurrence of large 

changes in returns. Meanwhile, these jumps may affect future volatility 

less than what standard volatility would predict. Other volatility models 

that are not robust to jumps may substantially inflate the realized 

measures whenever there are jumps (see Lee and Mykland, 2008). 

Huang and Tauchen (2005) show the importance of jumps in volatility 

series and argue that they account for up to 7 percent of Standard & 

Poors (S&P500) cash index variation. 

The arrival of new information could lead to unexpected rapid 

changes/jumps in the prices of stocks, with general price movement 

following the Brownian motion, which means the present state is being 

determined directly by the past state. Jumps in stock prices are also 

known to follow a probability law, that is, a Poisson process which is a 

continuous time discrete process (Laurent, 2013). Andersen, Bollerslev 

and Dobrev (2007) initially propose Brownian Semi-Martingale with 

Jumps (BSMJ) models for predicting prices of financial assets, but this 

model is not parametric and cannot predict the market volatility
7
.  

The specification of GARCH model is based on the assumption that each 

return observation has the same relative impact on future conditional 

volatility, regardless of the magnitude of the returns. With an increasing 

body of evidences, it has been shown that largest return observations 

may have a relatively smaller effect on future volatility than smaller 

shocks. Creal, Koopman and Lucas (2011, 2013) and Harvey (2013) 

propose models to deal with volatility modelling in the presence of 

jumps in the returns series, and further work on the model has been 

presented in Creal, Koopman and Lucas (2014) and Blasques, Koopman 

and Lucas (2014a,b). Their models rely on a non-normal distribution of 

the innovations and GARCH-type equation for the conditional variance 

derived from the conditional score of the assumed GARCH probability 

distribution with respect to the second moment. This class of models is 

termed Generalized Autoregressive Score (GAS) models, which gives 

                                                 
7
 Non-parametric tests for detecting of jumps in financial time series are well 

documented in Anderslev and Bollerslev (1997), Andersen, Bollerslev, Diebold and 

Labys (2003), Andersen, Bollerslev, Christoffersen and Diebold (2006), Andersen, 

Bollerslev and Diebold (2007), Anderslev, Bollerslev and Dobrev (2007), Andersen, 

Dobrev and Schaumburg (2008), Barndorff-Nielsen and Shephard (2004a,b), 

Barndorff-Nielsen and Shephard (2006), Lee and Mykland (2008), Boudt, Croux and 

Laurent (2008, 2011a, 2011b). 
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rise to new interesting models such as the dynamic models for location, 

volatility, and multivariate dependence for fat-tailed densities of Creal, 

Koopman and Lucas (2011).  

The extension to this class of models is presented as the observation-

driven mixed measurement dynamic factor models proposed in Andres 

(2014), Creal, Koopman and Lucas (2014), Harvey and Luati (2014) and 

Lucas, Schwaab and Zhang (2014). This family encompasses well-

known observation driven time varying parameter models including the 

Autoregressive Conditional Heteroscedasticity (ARCH) model of Engle 

(1982), the GARCH model, the EGARCH model, the Autoregressive 

Conditional Duration (ACD) model of Engle and Russell (1998), the 

Multiplicative Error Model (MEM) of Engle (2002), the Autoregressive 

Conditional Multinomial (ACM) model of Rydberg and Shephard 

(2003), and many other related models. Among these models are the 

Beta-t-EGARCH models which combine the dynamics of time-varying 

parameter using the scaled score of the conditional density (Blasques, 

Koopman and Lucas, 2014b). The Beta-skew-t-GARCH model is 

specified with the conditional probability distribution that is heavily 

tailed and skewed, and this model is found to perform better than 

GARCH model with skew Student-t distribution (Harvey, 2014). The 

exponential and asymmetric versions of these models were also 

proposed (see Harvey, 2013). 

3. Methodology 

The classical GARCH model and its asymmetric variants are not robust 

to jumps inherent in return series, thus, policy decisions arising from 

their parameter estimates could be misleading. 

  

3.1  The Beta-t-GARCH Variants 

We define tr  as a  1t  vector of assets log-returns up to time t, that is,  

t t t tr z   ,            (1) 

where tz  follows a particular probability distribution
8
, and t  is the 

square root of the conditional variance. The GARCH(1,1) equation of 

Bollerslev (1986) is given by, 

                                                 
8 The unconditional distribution of GARCH model still gives thicker tails than the normal 

distribution, therefore other classical distributions like Student-t (Bollerslev, 1987), GED 
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2 2 2

1 1 1 1t t tw                 (2) 

where w , 
1  and 

1  are parameters, and these, conditioned as 0,w   

1 0,   and 1 0   to ensure positive definiteness and covariance 

stationarity of the conditional variance series.  Re-writing GARCH (1,1) 

in (2) gives, 

2 2 2 2

1 1 1 1 1t t t tw z         

   2 2 2 2

1 1 1 1 1 11t t t tw z             

2 2 2

1 1 1 1 1t t t tw u                (3) 

where 1 1 1     and 2

1 1t tu z    for Normal distribution is 

proportional to the score of the conditional distribution of t  with 

respect to 2

1t 
. The model (3) is Beta-N-GARCH model

9
, since 

   1 1tu v   has a Beta distribution, and the innovations 
tu  are given 

as, 
  2

2

1
1

2

t

t

t

v z
u

v z


 

 
 for Student-t distribution,  0,1,tz T v   (4) 

and 
 

 

*1
1

2 t

t t

t I

t

v z z
u

v g 


 


 for Skewed Student-t distribution, 

 0,1, ,tz skT v  where
10

  

*

t tz sz m  ,      * * *0 0 ,t t t tI sgn z I z I z      
 

*2

2
1

2 t

t
t I

z
g

v 
 


,  

                                                                                                                       
(Nelson, 1991) as well as the skewed versions (see Hansen, 1994; Lambert and Laurent, 2000, 

2001; Theodossiou, 2002)) are often applied. These skewed versions were proposed to account 

for both fat left and right tails of the GARCH innovations. 
9 By setting 2

t t  , and t t tS   , where t  is the score with respect to the parameter 

t  that is  1 1log , , , ;t t t t t t tf y Y X         and tS  is a time domain dependent 

scaling matrix set as 2tS  . Equating 1 1A   and 1 1 B   , the Beta-GARCH model 

is re-specified in a more compact form as 

 
1 1 1 1t t tw A B      . 

10
 Note,      * * *0 0t t t tI sgn z I z I z      is an indicator measure asymmetry. 
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
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2
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1s m



 
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 
.   (5) 

Now, combining (3) with (4) gives the Beta-t-GARCH model and 

combining (3) with (5) gives the Beta-Skew-t-GARCH model. The 

Student-t distribution is symmetric, just like the Normal distribution and 

it is expected to capture the tail effect better than the normal distribution. 

The skewed Student-t distribution is asymmetric, expected to perform 

better than the symmetric distribution in predicting the tail effect 

volatility model. 

Harvey (2013) also considered the Exponential GARCH (EGARCH) 

and Asymmetric Exponential GARCH (AEGARCH) types of the Beta-

GARCH models, each with the two distributional assumptions
11

 applied. 

The Beta-EGARCH model, specified without the leverage effect
12

, is 

given as: 

2 2

1 1 1 1log logt t tw u                       (6) 

Introducing the leverage effect, we have the Beta-AEGARCH model, 

2 2

1 1 1 1 1 1log logt t t tw u l                  (7) 

where   1 1t t tl sgn z u     when Student-t distribution is considered 

and   *

1 1t t tl sgn z u     for the skewed Student-t distribution.
1314

  

Now, combining the Student t distribution in (4) with (6) leads to the 

Beta-t-EGARCH model, and similarly for skewed Student t distribution.  

                                                 
11

 Following Harvey (2013), It is very straightforward to consider other GARCH 

distributional assumptions such as the Normal and Generalized Error distributions once 

these are sure to capture the tail effect of he innovations very well.   
12

 The Beta-EGARCH specification has no asymmetric parameter, unlike the classical 

EGARCH model of Nelson (1991). 
13

 Note, from the definitions of both Student-t and skewed Student-t distributions 

defined above,   1 1t t tl sgn z u     is obtained in a similar manner using the 

function “sgn” (See Laurent, 2013; Harvey, 2013; Salisu, 2016). 

14
 Note,  

2

2

1

1
tE l









 the Student-t distribution and   0tE l   for the Skewed 

Student-t distribution. 
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Again, combining the same Student t distribution with (7) leads to Beta-

t-AEGARCH model, and we obtain similarly model when skewed 

Student t distribution is applied. The specifications of GAS models in (6) 

and (7) closely resemble that of the classical EGARCH(1,1) model of 

Nelson (1991) with model specification given as, 

   2 21 1 1
1 1 1 2 1 1

1 1 1

log 1 1 logt t t
t t

t t t

w L E
  

      
  

  


  

     
                   

 (8) 

where L is the lag operator, 1  and 2  are the asymmetry parameters 

which control the sign and magnitude respectively. The value of 

 /t tE     depends on the assumption made on the unconditional 

density of /t t tz   . For the Skewed Student-t distribution, 

 
 

2

1
2

4 2
/

1 2
t t

v
v

E
v


 

  

 
       

  
         (9) 

where 1   for the Student-t distribution. 

 

2.1 Maximum Likelihood Estimation and Inference 

The procedure for Maximum Likelihood Estimation (MLE) of GAS 

family models was presented in Blasques, Koopman and Lucas (2014a). 

The strong consistency and asymptotic normality of the MLE are also 

presented. The log-likelihood functions,  .L  for the Beta-t-EGARCH 

model from the Student-t and Skewed Student-t distributions are 

optimized with respect to the unknown dynamic parameters, contained in 

the vector  , and v; in the first order model,  1 1 1, , , ,w     . The 

likelihood function is known in closed form by means of prediction error 

decomposition and this facilitates the parameter estimation via the MLE 

approach.
15

 This method uses the Quasi-Newton method, proposed 

independently in Broyden (1970), Fletcher (Fletcher), Goldfarb (1970) 

and Shanno (1970), and named after the authors as BFGS algorithm, this 

was implemented in GARCH7 program by Laurent and Peters (2006) 

and Laurent (2013).  

Straumann and Mikosch (2006) present the asymptotic theory for 

GARCH models with the complex mathematics. As noted, they were 

unable to obtain Quasi ML estimates for EGARCH model. Therefore, 

                                                 
15

 See Harvey (2013), Blasques, Koopman and Lucas (2014a, 2014b) for theoretical 

properties of the MLE for GAS family model. 
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the use of numerical expressions for simplifying the likelihood function 

is often applied (see Francq and Zakoian, 2009; 2010).  

 

2.2 Forecasts Comparison 

The major essence of modelling in Time Series Analysis is to obtain a 

representative model for our data, therefore, we subject the estimated 

conditional volatility series to forecasts performance tests. We apply the 

Loss Functions approach. Most empirical financial time series papers do 

not obtain the out-of-sample forecasts for GARCH models or even 

forecast other nonlinear financial time series, since this is not easy to 

obtain (Xekalaki and Degiannakis, 2010), we therefore consider only the 

in-sample-forecast performances of the volatility models.  

The usual method of comparing the forecast generated from models by 

the Mean Square Forecasts Error (MSFE) and Mean Absolute Forecast 

Error (MAFE) are common in literature. More recent approach is the 

application of Loss Functions, though these give equivalent results to the 

naive methods of evaluating forecasts. The Squared Error (SE) and 

Absolute Error (AE) loss functions are proposed in Brooks and Persand 

(2003). The Heteroscedasticity-Adjusted Squared Error (HASE) and 

Heteroscedasticity-Adjusted Absolute Error (HAAE) loss functions are 

applied in Andersen, Bollerslev and Lange (1999). The Logarithmic 

Error (LE) loss function is applied in Saez (1997) and the Gaussian 

Likelihood (GL) loss function is given in Bollerslev, Engle and Nelson 

(1994). Taking the in-sample conditional volatility series over some  -

day period, then, the in-sample conditional forecasts variance is given as 
 2

1
ˆ

t


 

 for a period of   days, from 1t   to t   depending on the size of 

the time series. Since the actual variance for a period of 
 
business days 

from 1t 
 

to t   is not observed, we therefore apply a proxy 

measurement of using the squared returns 2

tr  for measuring the actual 

daily volatility in the log returns from t+1 to t+  days. The in-sample 

mean loss functions are then given as, 

  
2

2 2

1

1

ˆ1 ;t t i

i

SE r



   



      (10) 

 2 2

1

1

ˆ1 ;t t i

i

AE r



   



      (11) 

   
2

22

1

1

ˆ1 1 ;t i t

i

HASE r



  



      (12) 
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  22

1

1

ˆ1 1 ;t i t

i

HAAE r



  



      (13) 

  
2

22

1

1

ˆ1 log  and t i t

i

LE r



  



 
   

    (14) 

     2 22

1 1

1

ˆ ˆ1 log t t i t

i

GL r


 
    



  
      (15) 

The model with the smallest loss function actually gives the best 

forecasts.  

 

3. The Data and Empirical Results 

The data used in this paper are the daily All Share Indices (ASI) of 

Nigerian Stock Exchange from 3 January 2006 to 22 July 2014 covering 

2085 data points of business days, excluding weekends and public 

holidays. The time plot of the ASI is displayed below.  

 
Figure 1: Plots of ASI, Log-returns and Squared Log-returns series 
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We observe some sharp jumps in the time plot in Figure 1, and as a 

result, an asymmetric volatility model would likely be the best model for 

modelling the series (see Salisu, 2012; Yaya, 2013, Yaya and Gil-Alana, 

2014). The plots, the log returns of ASI and squared returns of ASI 

series are given in Figure 1 below. In the upper panel, where we have the 

stock prices of the (ASI), we observe series of jumps.  This, coupled 

with the asymmetric movement makes modelling volatility in the ASI 

log-returns complex. Relating the jumps to the log-returns in the middle 

panel, these jumps correspond to the points with significant spikes. The 

longest spike around the middle of the plot is as a result of very sharp 

rise in the prices, which market reacts to occasionally. The squared log-

returns are plotted in the lower panel.   

We first approached the estimation
16

 of the volatility models by 

estimating the four stationary models and the nonstationary IGARCH 

models as applied in Yaya (2013), even though we considered different 

sampled data
17

. We then found the optimal model, out of the five models 

to be IGARCH, as suggested by the estimates of maximum log-

likelihood, minimum Akaike (AIC) and Swartz Bayesian (SBIC) 

information criteria as given in Table 1. This is in agreement with what 

is obtained in Yaya (2013), though with different sampled data. The 

results here are necessary in order to show the superiority of the new 

class of models over the classical models.   

Table 1: Estimates of AIC and SBIC for Classical GARCH Variants 

AIC -8.2849 -8.2237 -8.284 -8.285 -8.2858

SBIC -8.2741 -8.2074 -8.2705 -8.2687 -8.2777

AIC -8.2847 -8.2411 -8.2841 -8.2852 -8.2857

SBIC -8.2712 -8.2221 -8.2678 -8.2663 -8.2729

Student-t

Skewed Student-t

Information CriteriaDistribution GARCH EGARCH GJR APARCH IGARCH

 
 

We proceed to estimating the GAS models. Due to the fact that GAS 

family models were derived from EGARCH specification, we present 

the results for EGARCH model here and compare the estimates with the 

                                                 
16

 The program used for the estimation is OxGARCH7 software developed by Laurent 

and Peter (2006) and Laurent (2013).  
17

 Yaya (2013) considered ASI time series from January 2007 to December 2011 

covering 1231 data points, while the same sample was considered in Yaya and Gil-

Alana (2014). The data considered were updated to 2014. 

2006                             2008                            2010                           2012                        2014 
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other models, each case, under the GARCH assumed probability 

distributional assumption. The case of Student-t distribution is given in 

Table 2, while that of Skewed Student-t distribution is given in Table 3. 

In Table 2, the full results for IGARCH-t model and EGARCH-t models 

are presented here. There was algorithm convergence problem, while 

computing the parameter estimates for EGARCH-t model, therefore only 

the model evaluation criteria were reported. For the IGARCH-t model, 

the estimate of excess kurtosis is 55.908. This value is the lowest among 

kurtosis values of other competing models computed in Table 2. Thus, 

indicating that the Student-t distribution with the IGARCH specification 

may not capture well the dynamics of the tail behaviour of ASI log-

returns. The three GAS models, the Beta-t-GARCH, Beta-t-EGARCH 

and Beta-t-AEGARCH gave AIC and SBIC values of (-8.2851, -8.2743), 

(-8.2871, -8.2762) and (-8.2861, -8.2726), respectively, with that of 

Beta-t-EGARCH model being the least, making the model the best 

among the five competing models in Table 2. We can also see that the 

asymmetric parameter 1  is not significant at 5% level. The excess 

kurtosis for this optimal model is 78.848 and that of Beta-t-AEGARCH 

model is 78.502. That of Beta-t-GARCH model is 58.957 and this value 

is very close to that of IGARCH model. Thus, the EGARCH dynamics 

in the models actually influence the tail distribution.   

  

Table 2: Estimated Volatility models with Student-t distribution 

assumption  

Pars. IGARCH (1,1)-t
EGARCH 

(1,1)-t

Beta-t-

GARCH 

(1,1)

Beta-t-

EGARCH 

(1,1)

Beta-t-

AEGARCH   

(1,1)

2.3053*** -0.0098
 nc 2.0946*** -1.3E06*** -1.3E06***

0.4758*** -0.4024
 nc 0.4052*** 0.3726*** 0.3723***

0.5247*** 0.9194
 nc --- --- ---

--- -12.0015
 nc --- --- ---

--- 100.4108
 nc --- --- ---

--- --- 0.9221*** 0.8777*** 0.8780***

--- ---- --- --- -0.0031

Student-t df 4.2547*** 2.0000
 nc 3.8531*** 4.0149*** 4.0173***

 Model Eval.

Log-lik. 8636.84 8575.08 8637.1 8639.11 8639.13

AIC -8.2858 -8.2237 -8.2851 -8.2871 -8.2861

SBIC -8.2777 -8.2074 -8.2743 -8.2762 -8.2726

Skewness 2.8249*** 3.3708*** 2.4526*** 3.4102*** 3.3964***

Ex. Kurtosis 55.908*** 70.355*** 58.957*** 78.848*** 78.502***

Jarque-Bera 274190*** 433750*** 303920***
543880**

*
539120***

ARCH(1) test 0.0778 0.0562 1.8503 0.1079 0.0997

ARCH(5) test 0.0567 0.0299 1.6279 0.1556 0.1566

ARCH(10) test 0.0878 0.1027 1.1292 0.1619 0.1611

w

1

1

1

2

1

1

 
                       nc means  No Convergence      ***significant at 5%. 
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Considering the case of Skewed Student-t distribution for the models as 

presented in Table 3, we obtained results for the five models, IGARCH, 

EGARCH and the three GAS variants. The IGARCH-skew-t model gave 

AIC and SBIC values of -8.2857 and -8.2729, respectively, with excess 

kurtosis of 56.501. The EGARCH-skew-t model converged at this time 

and the two asymmetric parameters are significant. The kurtosis estimate 

improved to 61.486 due to the introduction of the EGARCH model, 

though IGARCH-skew-t model would perform better than the 

EGARCH-skew-t model in terms of fitness. Of the three GAS variants 

under skewed Student-t distribution, Beta-skew-t-EGARCH model is the 

optimal, having the least AIC and SBIC of -8.2867 and -8.2731, 

respectively. The excess kurtosis realized from the model estimates is 

77.966.  

Now, between Beta-t-EGARCH and Beta-skew-t-EGARCH models, the 

better model based on minimum information criteria is the Beta-t-

EGARCH model.  

Table 3: Estimated Volatility models with skewed Student-t distribution 

assumption  

Pars.
IGARCH 

(1,1)-skew-t

EGARCH 

(1,1)-skew-t

Beta-skew-t-

GARCH (1,1)

Beta-skew-t-

EGARCH (1,1)

Beta-skew-t-

AEGARCH 

(1,1)

2.257*** -0.1065 2.0536*** -1.3E06*** -1.3E06***

0.4723*** 0.8149*** 0.4029*** 0.3708*** 0.3711***

0.5277*** 0.8148*** --- --- ---

--- -0.023987*** --- --- ---

--- 0.6186*** --- --- ---

--- --- 0.9232*** 0.8792*** 0.8789***

--- --- --- --- 0.0043

Student-t 

df
4.2716*** 4.1109*** 3.8617*** 4.0219*** 4.0189***

Asymmetr

y
0.0329 0.0378 0.02449 0.0263 0.0286

Tail 4.2716*** 4.1109*** 3.8617*** 4.0219*** 4.0189***

Model 

Eval.

Log-lik. 8637.68 8594.22 8637.65 8639.72 8639.75

AIC -8.2857 -8.2411 -8.2847 -8.2867 -8.2857

SBIC -8.2729 -8.2221 -8.2712 -8.2731 -8.2695

Skewness 2.8515*** 2.4651*** 2.4544*** 3.3767*** 3.3930***

Ex. 

Kurtosis
56.501*** 61.486*** 58.714*** 77.966*** 78.370***

Jarque-

Bera
280020*** 330380*** 301440*** 531790*** 5.3732***

ARCH(1) 

test
0.0765 0.0662 1.7995 0.0961 0.1066

ARCH(5) 

test
0.0561 0.0442 1.5912 0.1652 0.1641

ARCH(10) 

test
0.0848 0.351 1.1026 0.1658 0.167

w

1

1

1

2

1

1

 
       ***significant at 5%. 
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We further probe these results by carrying out forecasts evaluation test 

based on the minimum loss functions on IGARCH, EGARCH and the 

three GAS variants, for both Student-t distribution and its skewed 

versions as presented Table 4. The three GAS variants outperformed the 

IGARCH and EGARCH models in terms of forecasting ability, since the 

estimates of their loss functions are smaller than that of IGARCH and 

EGARCH models. Though there were convergence problems, during the 

estimation of EGARCH model under the Student-t distributional 

assumption and this was reflected in the very high values of loss 

functions obtained for the model. Among the three GAS variants, there 

is no dominating model in terms of forecasts performance.   

 

Table 4: Forecasts Evaluation of models based on Loss Functions 

Approach 

Loss Functions IGARCH (1,1)-t EGARCH (1,1)-t Beta-t-GARCH (1,1) Beta-t-EGARCH  (1,1) Beta-t-AEGARCH (1,1)

SE 9.09E-08 13.999 8.07E-08 8.02E-08 8.02E-08

AE 6.64E-05 1.0393 5.86E-05 5.70E-05 5.69E-05

HASE 717.5451 0.9997 652.0338 650.2601 651.1461

HAAE 4.5604 0.9998 4.2627 4.5839 4.588

LE 3.577607 29.1704 3.532 3.5598 3.5595

GL -0.1661 -0.2749 -0.4691 -0.1474 -0.1431

Loss Functions IGARCH( 1,1)-skew-t EGARCH (1,1)- skew-t Beta-skew-t-GARCH(1,1) Beta-skew-t-EGARCH (1,1) Beta-skew-t-AEGARCH(1,1)

SE 8.24E-08 9.64E-08 7.97E-08 7.97E-08 7.97E-08

AE 5.82E-05 6.26E-05 5.09E-05 5.14E-05 5.14E-05

HASE 943.0013 711.8856 713.0776 618.31 618.1313

HAAE 4.75666 4.2065 4.3461 4.2929 4.2998

LE 3.552 3.5885 3.4377 3.4839 3.4838

GL 0.0565 -0.478 -0.3604 -0.4034 -0.39688

Student-t distribution

skewed Student-t distribution

 
 

5. Summary, Conclusion and Policy Implications    

We have considered modelling the returns of ASI on NSE using variants 

of Beta-t-EGARCH model. This model, which is asymmetric volatility 

model was developed from the classical EGARCH model. Its special 

application of capturing asymmetric jumps in volatility series makes it 

appealing and preferred to other asymmetric models proposed earlier in 

literature. As a new model proposed in Harvey (2013), with other GAS 

family models proposed in Creal, Koopman and Lucas (2011, 2013), the 

model and its variants are yet to get wider applications, though the  

asymptotic theory of the models, properties and MLE approach are given 

in Blasques, Koopman, and Lucas (2014a, 2014b). 
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In this paper, the ASI time series, as plotted on the time plots indicate 

different bull and bear market phases, coupled with the global financial 

crisis between 2008 and 2009. Occasional jumps in prices were observed 

in the sampled data (January 2006-July 2014). Following Yaya (2013), 

the IGARCH-t model was picked as the best performing model in 

predicting the ASI returns, and using ASI with different sample size, the 

same conclusion was obtained when the classical volatility models 

(GARCH, EGARCH, GJR, APARCH and IGARCH) were considered. 

Parameter estimation with minimum information criteria selected Beta-t-

EGARCH and Beta-skew-t-EGARCH models under each distributional 

assumption, and the better model is the Beta-t-EGARCH model. 

Forecast evaluation test on the five models (IGARCH, EGARCH and the 

three GAS variants) actually indicated the superiority of GAS variants to 

IGARCH model, with the EGARCH model as the least performing 

model in terms of forecasts. Among the three GAS variants, the loss 

function approach could not distinguish the best performing model.  

The dynamics of ASI time series is complex and robust volatility models 

for jumps are proposed to capture accurately the realized conditional 

volatility. This paper has shown that the IGARCH-t model of Yaya 

(2013) may not serve the financiers well in predicting the volatility in 

the Nigerian stocks market, which led to the proposition of a more robust 

model. Studies on volatility modelling are expected to be conducted on 

high frequency data, whereas some other authors erroneously apply 

monthly data in investigating volatility in stocks, the results obtained 

therefore underestimate stocks market volatility. Accounting for jumps 

in investment models is of paramount importance due to its significant 

implications on assets pricing and portfolio decisions of investors and 

market players. The combination of decisions of individual market 

players as well as investors in the economy determines the aggregate 

market trend. Therefore, as markets are driven by information, it implies 

that wrong decision taken in respect of inappropriate analytical model (in 

this case, incorrect capturing of jumps in stock market volatility models) 

could misinform the market players. Given the interplay of capital and 

money markets, such misinformation could generate intense market 

volatility that is capable of distorting the price and financial system 

stability objective of the monetary authorities. 

This paper has established the asymmetric nature of the Nigerian capital 

market using ASI log-returns as proxy variable to Nigerian stocks. We 
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therefore recommend the GAS, EGAS and AEGAS family model in 

predicting jumps, outliers and asymmetry in financial time series. These 

aberrant observations, when left uncaptured in the predicting model 

could lead to mis-specified model, thereby leading to faulty predictions. 

This new model can also be applied in predicting the price movements of 

individual shares/stocks or industry/sub-sectorial indices of the Nigerian 

stock market, but with the assumptions of data availability. This present 

work could be  extended  in many ways: first, by applying it on the price 

index of each portfolio of NSE; and also  on the share prices of 

individuals stocks.  
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